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Abstract. We use the concept of block variables to obtain a measure of order/disorder for
some one-dimensional deterministic aperiodic sequences. For the Thue–Morse sequence, the
Rudin–Shapiro sequence and the period-doubling sequence it is possible to obtain analytical
expressions in the limit of infinite sequences. For the Fibonacci sequence, we present some
analytical results which can be supported by numerical arguments. It turns out that the block
variables show a wide range of different behaviour, some of them indicating that some of the
considered sequences are more ‘random’ than other. However, the method does not give any
definite answer to the question of which sequence is more disordered than the other and, in this
sense, the results obtained are negative. We compare this with some other ways of measuring
the amount of order/disorder in such systems, and there seems to be no direct correspondence
between the measures.

1. Introduction

There has been much interest in the classification of different aperiodic sequences during
the last decades. The reason for this comes from both physical as well as non-physical
problems. The main question has been how ‘random’ a certain sequence is, a question
which turns out to have no definite answer, but instead depends upon which measure we
choose to use.

A brief historical outline might look like the following: Both the experimental discovery
of incommensurate crystals in the early 1960s [1] and of quasicrystals in 1984 [2] as well
as the fabrication of a Fibonacci superlattice in 1985 [3] have inspired much theoretical and
experimental work concerning systems with order between periodic and random. Due to
mathematical constraints, much theoretical work has been restricted to one-dimensional
models, such as the Fibonacci model, the Thue–Morse model and the Rudin–Shapiro
model. In particular, which systems cause localization for the wavefunction governed by the
Schr̈odinger equation in the tight-binding formalism with only nearest-neighbour interaction
has been studied. It is well known that in one dimension, a randomly ordered system has
all eigenstates localized (Anderson localization) and a spectrum which is pure point (this
statement is not absolutely true, e.g. a system built from random dimers has extended
states [4], and if we consider a specific transfer-model with hopping integrals of different
signs, all states are extended [5]), while a periodic system has extended (Bloch) states
and an absolutely continuous spectrum. It has been rigorously proven that the systems
generated by, for example, the Fibonacci sequence and the Thue–Morse sequence have
singular continuous spectra and wavefunctions which are neither localized nor extended in
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the ordinary sense (they are often denoted as ‘critical’). Other physical systems with an
aperiodic order which have been studied are, for example, the Ising quantum chain [6] and
vibrating lattices with anharmonic potentials [7]. In both these cases, a behaviour which
differs from both a periodic structure and a random structure is found.

Another important area which deals with the classification of aperiodic sequences is the
theory of communication [8]. Here it is important to be able to distinguish between the
noise and the significant parts of a sequence. This is often connected with the more general
study of symbolic dynamics [9], which has developed to become a research area in its own
right. In particular, much attention has been paid to the period-doubling sequence, which
describes the behaviour of any system at the Myrberg point (the accumulation point of the
period-doubling cascade [9]). It has also been suggested that the concepts from symbolic
dynamics might be useful in the analysis of DNA sequences [10].

There have been several attempts to find a simple measure for the amount of order for
aperiodic sequences, e.g. an entropy concept from information theory [11], a quantity called
‘log-entropy’ [12],χ2-tests [13], spectral tests [10, 13], and energy spectrum [14] have been
considered. Furthermore, the behaviour of the Fourier transform has been intensively studied
[14], also with ordinary multifractal analysis, capturing the global behaviour [15] and with
wavelets to obtain the local properties [16]. However, depending on which property we
consider, different sequences qualify as ‘most ordered’ or ‘most disordered’.

In this paper, we apply the formalism ofblock variables[17] in order to classify the
different sequences mentioned above. This method has previously been used in the context
of the protein folding problem to distinguish random sequences from non-random sequences
in [18]. There it is claimed that it is indeed possible to distinguish between these two types,
at least if real proteins are considered as the ordered sequences and the two different building
blocks are hydrophobic and hydrophilic residues, respectively.

In the next section, we will introduce the formalism and define the block variables and
some other related entities of interest. We will also state some already known results when
averaging over all sequences with a fixed ratio between the numbers of different elements.
Section 3 contains the explicit definitions of the deterministic sequences we will study and
the calculations of their block variables. Finally in section 4, we draw some conclusions
and make an outlook.

2. Formalism

Let {Vn}Nn=1 be a sequence whose elements are+1 or −1. The block variables are then
defined for alls which dividesN as

σ
(s)
i =

s∑
n=1

V(i−1)s+n i = 1, . . . ,
N

s
. (1)

If the Vns are independent random numbers drawn from the same distribution, there is
no correlation between the differentVns, and the quantityσ (s)i will scale linearly with s.
We will use this fact as one way of examining whether a given sequence is ordered or
disordered.

An important quantity to study in this context is the normalized mean-square fluctuation
of the block variables. To obtain this entity, we start by normalizing the block variables
according to

ψ
(s)
i =

1

K
(σ

(s)
i −Hs(N))2 i = 1, . . . ,

N

s
(2)
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where

Hs(N) = s

N

N/s∑
j=1

σ
(s)
j and K = 4N+N−

N(N − 1)

(
1− s

N

)
. (3)

HereN+ (N−) denotes the number of+1s (−1s) in the sequence. The numberK is chosen
such that if we average over all sequences with a fixed lengthN and a fixed number of
positive elementsN+, we have〈ψ(s)

i 〉N,N+ = s [18]. Note also that the sumHs(N) in (3) is
easily calculated by the observation

∑N/s

j=1 σ
(s)
j = N+ − N−. The normalized mean-square

fluctuation is now defined and calculated as

ψ(s) = s

N

N/s∑
i=1

ψ
(s)
i i = 1, . . . ,

N

s
. (4)

Due to the choice of the constantK, asserting that〈ψ(s)
i 〉N,N+ = s, we have as an immediate

consequence that〈ψ(s)〉N,N+ = s. We take this behaviour as an indication of a disordered
sequence, i.e. if a specific sequence has a normalized mean-square fluctuation which behaves
like the average of all sequences, we say it is disordered.

3. Results

We will focus our attention on the Thue–Morse sequence [19], the Rudin–Shapiro sequence
[20], the period-doubling sequence [9] and the Fibonacci sequence [21]. For the first
three sequences, we will analytically calculate both the block variables themselves and
their normalized mean-square fluctuation. For the Fibonacci sequence, we will obtain
some approximate analytical results for the block variables and confirm these results with
numerical calculations. Also the normalized mean-square fluctuation will be obtained
numerically.

3.1. Thue–Morse sequence

If we consider the Thue–Morse sequence as composed by ones and zeros, it can be defined
recursively as

m0 = 0 (5)

m2n = mn (6)

m2n+1 = 1−mn. (7)

(An alternative way of defining the Thue–Morse sequence is to count the parity of the sum
of digits in base two of the integern corresponding to the elementmn [22].) Before we
apply the formalism described in the previous section, we change the numbering of the
elements such that the first element has index one, and change all ones to minus ones and
all zeros to ones, i.e.Vn = 1−2mn−1, n = 1, 2, 3, . . .. It has been shown that this sequence
can also be obtained from the substitution rule A→ AB,B→ BA, see [22]. We start with
a seed A and apply the substitution rule repeatedly. This yields the generations A, AB,
ABBA, ABBABAAB etc. Finally, we replace each A with+1 and each B with−1.

We consider finite chains obtained by applying the substitution rulek times, i.e. chains
consisting of 2k elements. From (1) above,σ (1)i = Vi for all i. Otherwise, whens > 2 and
even (because it has to be a divisor ofN = 2k) we have

σ
(s)
i = 0 for all i. (8)
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This is because the Thue–Morse sequence can be considered to be constructed from the
two building blocks AB and BA. This also leads toN+ = N− = N/2, which for the only
non-zero case,s = 1, yieldsK = 1, independent of the value ofN (as long asN = 2k)
and the sumHs(N) in (3) becomes zero. The normalized block variables then become

ψ
(s)
i =

1

K
(σ

(s)
i )2 =

{
1 if s = 1

0 otherwise.
(9)

Finally, because of this trivial behaviour of the block variables, the normalized mean-square
fluctuation is easy to calculate and becomes

ψ(s) = s

N

N/s∑
i=1

ψ
(s)
i =

s

N

N

s
ψ
(s)
i =

{
1 if s = 1

0 otherwise.
(10)

3.2. Rudin–Shapiro sequence

The Rudin–Shapiro sequence was originally introduced [20] as an example of a sequence
fulfilling the inequality

sup
θ∈[0,1)

∣∣∣∣ N∑
n=0

Vne
in2πθ

∣∣∣∣ 6 (2+√2)
√
N. (11)

(Recall that a randomly picked sequence most probably has the magnitude
√
N logN [23].)

It can be determined recursively as

r0 = 1 (12)

r2n = rn (13)

r2n+1 = (−1)nrn. (14)

This definition yields a sequence consisting of positive and negative units directly. (An
alternative way of defining the Rudin–Shapiro sequence is to count the parity of the number
of occurrences of the pattern 11 in base two of the integern corresponding to the elementrn
[22].) All we have to do to fit it into the formalism developed in the previous section is to
change the indices one step according toVn = rn−1, n = 1, 2, 3, . . .. As for the Thue–Morse
sequence, it is possible to obtain the sequence from a substitution rule [22]. However, this
time we need four different elements for the rule to work properly. The substitution rule is
A → AB, B → AC, C→ DB, D→ DC. Here we use the letter A as a seed, and obtain
the following generations: A,AB,ABAC,ABACABDB ,ABACABDBABACDCAC , . . ..
Finally we replace every A and B with+1 and every C and D with−1.

In order to obtain the explicit expressions for the block variables and their normalized
mean-square fluctuations, we start by considering thesubstitution matrix, M. It is defined
from the relation

n(k+1) = Mn(k) (15)

wheren(k) is a vector whose components are the number of different letters in the sequence
when the substitution rule has been appliedk times. For the Rudin–Shapiro sequence, the
matrix looks like

M =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 . (16)
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Since we start with the letter A as a seed, we haven(0) = (1, 0, 0, 0)T . We can easily
calculaten(k) by a direct diagonalization ofM and obtain after some tedious, but elementary,
work for all positive integersk

n(k) = Mkn(0) =


2k−2+ 2(k−5)/2[

√
2+ 1+ (−1)k(

√
2− 1)]

2k−2+ 2(k−5)/2[1− (−1)k]
2k−2− 2(k−5)/2[1− (−1)k]

2k−2− 2(k−5)/2[
√

2+ 1+ (−1)k(
√

2− 1)]

 . (17)

From the result above it is easy to obtain the block variablesσ
(s)

1 and σ (s)2 for the cases
when s can be written as two to the power of a positive integer, i.e.s = 2k. If we denote
the components ofn(k) asn(k)A , n(k)B , n(k)C andn(k)D , we have

σ
(s)

1 = n(log2 s)

A + n(log2 s)

B − n(log2 s)

C − n(log2 s)

D =
{√

2s if log2 s is odd√
s if log2 s is even.

(18)

Now σ
(s)

2 can be obtained as

σ
(s)

2 = σ (2s)1 − σ (s)1 =
{√

2s −
√

2s = 0 if log2 s is odd√
4s −√s = √s if log2 s is even.

(19)

Note that this result is valid for all substitutionable generable sequences with a substitution
matrix as (16), i.e. the ordering of the letters in the substitution rule is of no importance
when we calculate the first two block variables. When we considerσ

(s)
i for i > 3, we find

σ
(s)
i =

{
Viσ

(s)

1 if i is odd

Viσ
(s)

2 if i is even.
(20)

This formula can be obtained from the composition of the sequence. Remember that the
Vis only take the values±1 and therefore they only change the sign of the block variables.

When we calculateK from (3), we use that whenN is a power of two, limN→∞N+/N =
limN→∞N−/N = 1

2. This result can be obtained either from (17) or from the eigenvector
corresponding to the largest eigenvalue of the substitution matrix. (The largest eigenvalue is
2 with corresponding eigenvector(1, 1, 1, 1)T , which shows that for the infinite sequence, all
elements are equally common.) This does not contradict the result that the block variables
grow as the square-root of the block size, we just have to be careful when we let the size of
the system tend to infinity. For alls which divideN , we then have limN→∞K = 1. The
sumHs(N), also from (3), can easily be determined in this case. Since we have the same
ratio of positive and negative elements in the sequence, this entity disappears when we let
N tend to infinity, i.e. limN→∞Hs(N) = 0.

The normalized mean-square fluctuation can now be calculated for allN which are
powers of two, 2k say, and alls which are divisors toN , as

ψ(s) = s

N

N/s∑
i=1

ψ
(s)
i =

s

KN

N/s∑
i=1

(σ
(s)
i −Hs(N))2

= s

KN

N/(2s)∑
i=1

[(V2i−1σ
(s)

1 −Hs(N))2+ (V2iσ
(s)

2 −Hs(N))2]

=


s

KN

N

2s
[(±
√

2s −Hs(N))2+ (0−Hs(N))2] if log 2 s is odd

s

KN

N

2s
[(±√s −Hs(N))2+ (±

√
s −Hs(N))2] if log 2 s is even.

(21)
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Hence

ψ(s)→ s whenN = 2k →∞. (22)

Note that this is the same result as we have when we average over all sequences with the
same ratio between the number of positive and negative elements as the Rudin–Shapiro
sequence, as stated above.

3.3. Period-doubling sequence

As the other sequences considered here, the period-doubling sequence can be generated by
a substitution rule. This time, it looks like A→ AB, B→ AA, and we still start with A as
a seed and attribute to each A in the sequence the value+1 and to each B the value−1.
The substitution matrix for this sequence is

M =
(

1 2
1 0

)
. (23)

We can now calculate the block variables in the same way as we did for the Rudin–
Shapiro sequence. We calculaten(k) by diagonalization ofM and use as an initial value
n(0) = (1, 0)T . This yields

n(k) = 1

3

(
2k+1+ (−1)k

2k − (−1)k

)
. (24)

The first block variable is now obtained as

σ
(s)

1 = n(log2 s)

A − n(log2 s)

B = 1
3[s + 2(−1)log2 s ]. (25)

The first term on the right-hand side,s/3, is exactly the result for a random sequence (or
more appropriate, for the average over all sequences) with the same proportion between the
number of As and Bs as for the period-doubling sequence. Also the second block variable
depends only on the substitution matrix and can be calculated as

σ
(s)

2 = σ (2s)1 − σ (s)1 = 1
3[s − 4(−1)log2 s ]. (26)

For larger indices, we get no new sequences{σ (s)i }s , but alternate between{σ (s)1 }s and{σ (s)2 }s
according to

σ
(s)
i =

{
σ
(s)

1 if Vi = +1

σ
(s)

2 if Vi = −1.
(27)

When we calculateK andHs(N) from (3), we use the fact that limN→∞N+/N = 2
3 and

limN→∞N−/N = 1
3 for all N which are powers of two, 2k say. This can be obtained as

for the Rudin–Shapiro sequence. This gives us limN→∞K = 8
9 and limN→∞Hs(N) = s/3

for all s. Finally for the period-doubling sequence, we have the normalized mean-square
fluctuationψ(s). This is obtained from the normalized block variables

ψ
(s)
i =

1

K
[σ (s)i −Hs(N)]2→

{
1
2 if Vi = +1

2 if Vi = −1
whenN = 2k →∞ (28)

by averaging these values with their relative occurrence in the infinite sequence. This means

ψ(s) = s

N

N/s∑
i=1

ψ
(s)
i → 2

3 × 1
2 + 1

3 × 2= 1 whenN = 2k →∞. (29)

As before, this is for alls which are divisors toN .
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3.4. Fibonacci sequence

The last sequence we will consider is the Fibonacci sequence. It can e.g. be obtained from
the substitution rule A→ AB, B→ A, where, as usual, we use the letter A as a seed and
put Vn = +1(−1) if site n is an A(B). Let us denote the sequence of Fibonacci numbers as
{Fk}, whereF1 = F2 = 1 andFk = Fk−1 + Fk−2, k > 2. The Fibonacci numbers can also
be obtained as

Fk = 1√
5

[τ k − (−1)kτ−k] (30)

whereτ denotes the golden mean(
√

5+ 1)/2. It is clear that after we have applied the
substitution rulek times, we will haveFk+2 letters in the chain. Of these letters,Fk+1 will
beAs andFk will be Bs. Whens is a Fibonacci number,s = Fk say, the block variable
σ
(s)

1 will obviously, for larges, behave as

σ
(s)

1 = Fk−1− Fk−2 = Fk−3 ≈ τ−3Fk = (
√

5− 2)s. (31)

The kth generation of the Fibonacci sequence, i.e. the finite sequence we have when the
substitution rule has been appliedk times, can also be obtained from a direct concatenation
of the generationsk − 1 andk − 2. Explicitly, let w(k) denote thekth generation of the
sequence. It is obtained recursively as

w(k) = w(k−1)w(k−2) (32)

with w(−1) = B andw(0) = A. As a consequence of this, it does not matter for the large
behaviour where in the sequence we start the summation in (1). This implies that all other
block variables,σ (s)i , i > 2, will behave in the same manner asσ (s)1 when s is increasing.
This has also been numerically checked to be true. As for the period-doubling sequence,
this is exactly the behaviour we would get for a purely random sequence with the same
proportion between the elements.

The normalized mean-square fluctuation,ψ(s), has very irregular behaviour, but
numerical calculations indicate that the values are almost uniformly spread between zero
and one (or slightly above). As far as the present author knows, there seems to be no other
way to obtain these values but by directly performing the sum in (4).

4. Conclusions and outlook

In the previous section, we have seen how the behaviour of the block variables and their
mean-square fluctuation vary very widely, depending on which sequence we consider.

None of the sequences treated above is of course truly random. After all, they could all
be obtained from rather short substitution rules. Nevertheless, they show different degrees
of ‘randomness’ dependent on which property we concentrate.

The block variables for the Thue–Morse sequence behave exactly as for a periodic
sequence with period two (wheni > 2 in (1)). This might look compelling when we
notice that the electron wavefunction for a physical system generated by the Thue–Morse
sequence can be Bloch-like [24]. On the other hand, both the Fibonacci sequence and
the period-doubling sequence have block variables which behave as for random systems,
despite both of them having a singular continuous spectrum for the same physical model as
we mentioned for Thue–Morse.

The Rudin–Shapiro sequence has an absolutely continuous Fourier transform, just as a
random sequence has (for the Rudin–Shapiro sequence it is actually a constant [14]), which
seems to fit in well with the observation given above that the normalized mean-square
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fluctuation of the block variables behaves exactly as for a random sequence. On the other
hand, the block variables themselves do not behave as for a random sequence, which should
imply that the Rudin–Shapiro sequence is not random at all.

Furthermore, the Fibonacci sequence is quasiperiodic, while the period-doubling
sequence is not. Nevertheless, their block variables show qualitatively the same behaviour.
The Thue–Morse sequence has a singular continuous Fourier spectrum [25], but the block
variables are, as mentioned above, identical to those of a periodic system with period two.

The results obtained above are, in some sense, only partial; we have only obtained results
for some specific choices of deterministic aperiodic sequences. For instance, one can ask
whether it possible to obtain a general result for fixed points of substitutions of constant
length, or even for substitutions of non-constant length. Nevertheless, it is still possible
to draw some conclusions from the cases treated in the present paper. The conclusion
from this very brief survey must be that the concept of block variables is of limited value
when we try to distinguish random sequences from the deterministic aperiodic sequences
treated in this paper. Nevertheless, the method has proved to be useful when considering
the protein folding problem [18], and therefore it might be interesting to study theoretically
the properties of a protein constructed according to the sequences we have considered here.
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